Volcanic Soils: Their Characteristics, Management Practices, and Potential Sollution for Water Pollution

  • Rendy Anggriawan Departement of Soil Science, Faculty of Agriculture, Jember University
  • Nuryana Ariska Salsabilla Department of Soil Science, Faculty of Agriculture, Jember University
  • Imelda Ayu Prahesti Department of Soil Science, Faculty of Agriculture, Jember University
Keywords: Volcanic Soil, Allophane, Imogolite, Adsorbent

Abstract

Volcanic soils are formed from materials originating from volcanic eruptions, and with various pedogenic processes occurring, volcanic soils have unique physical, chemical, and biological characteristics. This paper aims to review the characteristics of volcanic soils, constraints, management practices, and their potential as adsorbents for contaminants. The paper was based on secondary information using a systematic review. The studies carried out include identifying manuscripts, analyzing report data, critically assessing the topic, and combining the results of relevant published manuscripts. The issues raised include data on volcanic soils, management practices, water pollution, and using volcanic soils as an environmentally friendly adsorbent. Colloidal compounds in the clay fraction of volcanic soils generally contain active Al and Fe compounds, allophane, imogolite, ferrihydrite, or Al/Fe-humus complex, and together with opaline silica. The volcanic soil material produces a pool of Al and Fe solid phases with high reactivity, which contributes to the unique physicochemical properties of Andisol. The main problem chemically is the high adsorption of phosphate and nitrate ions which causes the fertilization process to be inefficient. The main problem affects the adsorption of phosphate and nitrate on agricultural lands, so fertilization becomes inefficient. However, the high reactivity of volcanic soils can be used as a basic pollutant adsorbent. This is quite a promising opportunity, given the wide distribution of volcanic soils, so this resource is a very prospective candidate as an adsorbent material in water purification.

References

[1] Abidin Z, Matsue N, Henmi T. 2007. Differential formation of allophane and imogolite: experimental and molecular orbital study. J Computer-Aided Mater Des. 14: 5-8.
[2] Chendy T, Irsal L, Muhammad N, Sukarman. 2021. Pengelolaan Lahan Berkarakter Khusus. Jakarta: IAARD PRESS.
[3] Dariah A, Husen E. 2007. Optimalisasi Multifungsi Pertanian Pada Usaha Tani Berbasis Tanaman Sayuran. Pros Semin Multifungsi Dan Revitalisasi Pertanian. 263–78.
[4] Dariah, A, Sukarman, Suratman,. 2020. Tanah Vulkanik Di Lahan Kering Berlereng Dan Potensinya Untuk Pertanian Di Indonesia. Jurnal Litbang Pertanian. 39 (1): 21-34.
[5] Egashira K, Aomine S. 1974. Effects of drying and heating on the surface area of allophane and imogolite. Clay Science.4: 231-242.
[6] Elhadi EA, Matsue N, Henmi T. 2000. Adsorption of molybdate on nano-ball allophane.Clay Science. 11: 189-204.
[7] Ghoneim A, Matsue N, Henmi T. 2006. Effect of Copper Adsorption on Some Charge Characteristics of nano-Ball Allophane. Internationl Journal of Soil Science. 1(3): 245-250.
[8] Ghoneim A, Matsue N, Ebid A, Henmi T. 2007. Change in Suface Acidity of nano-Ball Allophane upon Zinc Adsoprtion and its Mechanisms. Research Hournal of Environmental Sciences. 1 (2): 64-70.
[9] Handayani LDW, Tjahjono B, Trisasongko BH. 2013. Interpretasi Bentuklahan Gunungapi Guntur Menggunakan Citra Ikonos. J Ilmu Tanah dan Lingkung. 15(2):76.
[10] Henmi T, Wada K. 1976. Morphology and composition of allophane. American Mineralogist. 61:379-390.
[11] Huang YT, Lowe DJ, Chruchman GJ, Schipper LA, Cursorns R, Zhang H, Chent TY, Cooper A. 2016. DNA adsorption by nanocrystaline allophane spherules and nanoaggregates, and implications for carbon sequestration in andisols. Aplied Clay Science. 120: 40-50.
[12] Johan E, Matsue N, Henmi T. 1997. Phosphate Adsorption on Nano-ball Allophane and Its Molecular Orbital Analysis. Clay Science. 10: (259-270).
[13] Kaufold S, Dohrmann R, Abidin Z, Henmi T, Matsue N, Eichinger L. Kaufold A, Jahn A. 2010. Allophane compared with other sorbent minerals for the removal of fluoride water with particular focus on a mineble Ecuadorial Allophane. Applied Clay Science. 50: 25-33.
[14] Manihuruk L, Marpaung P, Lubis A. 2019. Distribusi Mineral Liat Tanah di Kebun Percobaan Universitas Sumatera Utara Tambunan A Kecamatan Salapian, Kabupaten Langkat. Agroetkoteknologi FP USU. 7(1):203–12.
[15] Michel FM, Barron V, Torrent J, Morales MP, Serna CJ, Boily JF, Liu QS, Ambrosini A, Cismasu AC, Brown GE. 2010. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc.Natl. Acad. Sci. 107: 2787–2792.
[16] Minarsih S, Samijan S, Arianti FD. 2020. Peningkatan Ketersediaan Phosphat pada Tanah Masam Melalui Inokulasi BPF dan Penambahan Bahan Organik. Pros Semin Nas Lahan Suboptimal ke-8 Tahun 2020, Palembang 20 Oktober 2020 “Komoditas Sumber Pangan untuk Meningkat Kualitas Kesehat di Era Pandemi Covid -19 ”.
[17] Parfitt RL. 2009. Allophane and imogolite: role in soil biogeochemical processes. Clay Minerals. 44: 135-155.
[18] Prajaputra V, Abidin Z, Widiatmaka. 2019. Methylene Blue Removal Using Developed Material From Volcanic Ash Soils. International Journal of Scientific & Technology Research. 8(7): 706-709.
[19] Purwanto S, Abdul Gani R, Sukarman Balai Besar Litbang Sumberdaya Lahan Pertanian D, Tentara Pelajar No J. Karakteristik Mineral Tanah Berbahan Vulkanik dan Potensi Kesuburannya di Pulau Jawa. J Sumberd Lahan. 2018;12(2):83–98.
[20] Shoji S, Nanzyo M, Dahlgren RA. 1993. Volcanic Ash Soils: Genesis, Properties, and Utilization. Amsterdam: Elsevier Science Publishers BV. p 112.
[21] Shukla EA, Matsue N., Henmi T., Johan E. 2011. Arsenate Adsorption Mechanism on Nano-ball Allophane by Langmuir Adsorption Equation. Environmental Research, Engineering and Management. 4(58): 5-9.
[22] Simamora J, Marpaung P, Lubis A. 2015. Penentuan Jenis Mineral Liat Alofan Tanah Andisol di Desa Dolat Rakyat Kecamatan Tiga Panah Kabupaten Karo. J Online Agroekoteknologi. 3(3):1005–1011.
[23] Sudadi, U., Anggriawan, R., & Anwar, S. (2019). Aplikasi kleinano dari tuf volkan Gunung Salak Indonesia sebagai adsorben alami kontaminan anionik: Fosfat perairan. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 9(4), 1032-1040.
[24] Sudadi, U., Anwar, S., Anggriawan, R., & Afrizal, T. 2020. Indonesian Nanoclays For The Removal Of Nitrate In Liquid Waste Containing Palm Oil Mill Effluent. Jurnal Agroteknologi. 13(02), 164-170. doi:10.19184/j-agt.v13i02.15327
[25] Sukarman, Dariah A. 2015. Tanah Andosol di Indonesia. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian. Bogor. 156.
[26] Sukarman. 2019. Akselerasi Inovasi Pedologi Dalam Optimalisasi Penggunaan Tanah Vulkanik. Badan penelitian dan Pengembangan Pertanian, Kementerian pertanian. IARRD-PRESS.
[27] Sukmawati S. 2011. Beberapa perubahan sifat kimia alofan dari andisol setelah menjerap asam humat dan asam silikat. Media Litbang Sulteng. 4(2):118–24.
[28] Suratman; Hikamtullah H, Sulaeman A. 2018. Karakteristik Tanah-Tanah dari Bahan Induk Abu Volkan Muda di Jawa Barat dan Jawa Tengah. Jurnal Tanah dan Iklim. 42 (1) ; 1-12.
[29] Theng BKG, Yuan G. 2008.Nanoparticles in the soil environment.Elements. 4:295-399.
[20] Ugolini FC, and Dahlgren RA. 2002. Soil development in volcanic ash. Global Environmental Research. 6: 69-81.
[31] Wada K, Wilson M, Kakuto Y, Wada SI. 1988. Synthesis and characterization of a hollow spherical form of monolayer aluminosilicate.Clays Clay Miner. 36: 11–18.
[32] Yuan G, Wu L. 2007.Allophane nanoclay for the removal of phosphorus in water and wastewater. Science and Technology of Advanced Material. 8: 60-62.
Published
2023-04-26
Section
Articles
Abstract viewed = 290 times
pdf downloaded = 450 times