ANALISIS KUAT TEKAN DAN ULTRASONIC PULSE VELOCITY (UPV TEST) PADA MUTU BETON K 350 MENGGUNAKAN BETON SISA PENGUJIAN SEBAGAI SUBSTITUSI AGREGAT KASAR

  • Azhar Darujati Program StudiiiTekniki Sipil, UniversitasiiIndo Globali Mandiri, Palembang, Sumatera Selatan, Indonesia
  • Sartika Nisumanti Program StudiiiTekniki Sipil, UniversitasiiIndo Globali Mandiri, Palembang, Sumatera Selatan, Indonesia
  • Ghina Amalia Program StudiiiTekniki Sipil, UniversitasiiIndo Globali Mandiri, Palembang, Sumatera Selatan, Indonesia
Keywords: compressive strength, concrete, remaining of concrete test, ultrasonic pulse velocity (UPV), variations

Abstract

One of the efforts to reduce the exploitation of natural rock as a constituent material for concrete is to utilize the concrete left over from the test. The test waste concrete used is leftover concrete or waste from laboratory test results as a substitute for coarse aggregates in the manufacture of new concrete. The purpose of this study is to determine the effect of using the residual concrete of the test as a substitution of coarse aggregates in the concrete mixture against the values of compressive strength and density through the ultrasonic pulse velocity (UPV) test. The research method used in this study is an experimental method by testing the compressive strength of concrete and testing ultrasonic pulse velocity (UPV test). From the test results, the average compressive strength of mixed concrete left over from the test experienced an increase in concrete compressive strength at a variation of 25% by 25.3 MPa, 35% by 26.7 MPa, and 50% by 28.6 MPa, but did not exceed normal concrete by 30.6 MPa. Meanwhile, the results of ultrasonic pulse velocity (UPV) testing experienced an increase in the average rapid propagation of 25% variation waves by 4034.0 m/s, 35% by 4413.7 m/s, 50% by 4589.3 m/s, and normal concrete by 4534.3 m/s. So the higher the compressive strength value of concrete, the higher the UPV test results will be.

References

Abdelmajeed, A., Shahiron, S., Faesal, A., Mohammed E., Nurul, I., Raihan, R. H., Sharifah, S., Mohd, Z., Faisal, S. K., & Mohd, H. W. I. (2018). Evaluate the Expressions of Compression Strength and UPV Relationship. International Journal of Integrated Engineering, 10(8), 33-37.

Azad, A. M. (2020). Compressive Strength-Ultrasonic Pulse Velocity Relationship of Concrete Containing Plastic Waste. IOP Conf. Series: Materials Science and Engineering, 978(1).

Ali, A., & Alam, S. (2019). Partial Replacement of Fine Aggregate with Brick Dust. International Journal of Technical Innovation in Modern Engineering & Science, 5, 77-80.

Astanto. (2021). Kontruksi Beton Bertulang. Yogjakarta: Kanisus.

ASTM. (1985). ASTM C. 150-1985. Standard Spesification for Portland Cement. Annual Books of ASTM Standard. Philadelphia, USA.

ASTM. (1995). ASTM C. 125-1995:61 Standard Definition of Terminology Relating to Concrete and Concrete Agregates. ASTM International.

BSN. (1996). SNI 03-4141-1996 tentang cara uji kadar lumpur pada agregat halus. Badan Standardisasi Nasional.

BNS. (2008a). SNI 1969-2008 tentang cara uji berat jenis dan penyerapan air agregat kasar. Badan Standardisasi Nasional.

BSN. (2008b). SNI 1970-2008 tentang cara uji berat jenis dan penyerapan air agregat halus. Badan Standardisasi Nasional.

BSN. (2010). SNI 1968-2010 tentang metode uji untuk analisis saringan agregat halus dan agregat kasar. Badan Standardisasi Nasional.

BSN. (2014). SNI 2816-2014 tentang metode uji bahan organik dalam agregat halus untuk beton. Badan Standardisasi Nasional.

Cahyo, Y., Candra, A. I., Siswanto E, & Gunarto, A. (2020). The Effect of Stirring Time and Concrete Compaction on K-200 Concrete Press Strength. Journal of Physics: Conference Series, 1569(4).

Duaa, J. A., Zena, K. A., & Suhair, K. A. (2022). Some Properties of Concrete Containing Waste Brick As Partial Replacement Of Coarse Aggregate And Addition Of Nano Brick Powder. IOP Conf. Series: Earth and Environmental Science, 961(1).

Farida, I., Krisdian, A., Walujodjati, E., & Roestaman, R. (2019). Proportion limits the effect of mixture of red brick stone on concrete strength. Journal of Physics: Conference Series, 1402(4).

Gaus, A. I., & Chairul, A. (2020). Analysis of The Mechanical Properties of Concrete Beams That Use Pumice as a Partial Substitution of Concrete Mixtures. Journal of Physics: Conference Series, 1569(4).

Maulana, A., Retno, U., & Megah, A. (2020). Pemanfaatan Limbah Beton Sisa Pengujian Sebagai Substitusi Agregat Pada Campuran AC-WC. Potensi Jurnal Sipil Politeknik, 22(1), 87-95.

Nisumanti, S., & Rusman, A. (2014). Kuat Tekan Beton Mutu Tinggi Dengan Penambahan Conplast SP 337. Jurnal Tekno Global, 3(1), 14-20.

Puspita, N., Yuni, A., & Febryandi. (2020). Flexural Strength Analysis of Concrete with the Addition B3 Waste as an Additive to Ordinary Portland Cement. Atlantis Press B.V., 7, 343-348.

Qubro, K. A., Anis, S., & Saloma. (2021). The Compressive Strength of Fly Ash Foamed Concrete with Polypropylene. IOP Conf. Series: Journal of Physics: Conf. Series., 2509(29), 447-453.

Soelarso, Baehaki, & Nur, F. S. (2016). Pengaruh Penggunaan Limbah Beton Sebagai Pengganti Agregat Kasar Pada Beton Normal Terhadap Kuat Tekan dan Modulus Elastisitas. Jurnal Pondasi, 5(2), 22-29.

Warnphen, H., Supakata, N., & Kanokkantapong, V. (2019). The Reuse of Waste Glass as Aggregate Replacement for Producing Concrete Bricks as an Alternative for Waste Glass Management on Sichang Island. Engineering Journal, 23, 43-58.

Zena, K. A., & Ahlam, A. A. (2021). The influence of incorporating recycled brick on concrete properties. IOP Conf. Series: Materials Science and Engineering, 1067(1).

Published
2023-06-19
Section
Articles
Abstract viewed = 256 times
PDF downloaded = 592 times